On Elliptic K3 Surfaces
نویسنده
چکیده
We make a complete list of all possible ADE-types of singular fibers of complex elliptic K3 surfaces and the torsion parts of their MordellWeil groups.
منابع مشابه
Elliptic Fibrations of Some Extremal Semi-stable K3 Surfaces
This paper presents explicit equations over Q for 32 extremal semistable elliptic K3 surfaces. They are realized as pull-back of non-semi-stable extremal rational elliptic surfaces via base change. Together with work of J. Top and N. Yui which exhibited the same procedure for the semi-stable extremal rational elliptic surfaces, this exhausts this approach to produce extremal semi-stable ellipti...
متن کاملClassification of Extremal Elliptic K3 Surfaces and Fundamental Groups of Open K3 Surfaces
We present a complete list of extremal elliptic K3 surfaces (Theorem 1.1). As an application, we give a sufficient condition for the topological fundamental group of complement to an ADE-configuration of smooth rational curves on a K3 surface to be trivial (Proposition 4.1 and Theorem 4.3).
متن کاملThree lectures on elliptic surfaces and curves of high rank
Three lectures on elliptic surfaces and curves of high rank Noam D. Elkies Over the past two years we have improved several of the (Mordell–Weil) rank records for elliptic curves over Q and nonconstant elliptic curves over Q(t). For example, we found the first example of a curve E/Q with 28 independent points P i ∈ E(Q) (the previous record was 24, by R. Martin and W. McMillen 2000), and the fi...
متن کاملElliptic Fibrations and Symplectic Automorphisms on K3 Surfaces
Nikulin has classified all finite abelian groups acting symplectically on a K3 surface and he has shown that the induced action on the K3 lattice U⊕E8(−1) depends only on the group but not on the K3 surface. For all the groups in the list of Nikulin we compute the invariant sublattice and its orthogonal complement by using some special elliptic K3 surfaces.
متن کاملElliptic Fibrations of Some Extremal K3 Surfaces
This paper is concerned with the construction of extremal elliptic K3 surfaces. It gives a complete treatment of those fibrations which can be derived from rational elliptic surfaces by easy manipulations of their Weierstrass equations. In particular, this approach enables us to find explicit equations for 38 semi-stable extremal elliptic K3 fibrations, 32 of which are indeed defined over Q. Th...
متن کاملDensity of Rational Curves on K3 Surfaces
Using the dynamics of self rational maps of elliptic K3 surfaces together with deformation theory, we prove that the union of rational curves is dense on a very general K3 surface and that the union of elliptic curves is dense in the 1st jet space of a very general K3 surface, both in the strong topology. The techniques developed here also lend themselves to applications to Abel-Jacobi images, ...
متن کامل